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Statistical mechanics of semiflexible ribbon polymers
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The statistical mechanics of a ribbon polymer made up of two semiflexible chains is studied using both
analytical techniques and simulation. The system is found to have a crossover transition at some finite tem-
perature, from one type of short-range order to a fundamentally different sort of short-range order. In the high
temperature regime, the two-point correlation functions of the object are identical to wormlike chains, while in
the low temperature regime they are different due to a twist structure. The crossover happens when the
persistence length of individual strands becomes comparable to the thickness of the ribbon. In the low tem-
perature regime, the ribbon is observed to have a ‘‘kink-rod’’ structure with a mutual exclusion of twist and
bend in contrast to smooth wormlike chain behavior. This is due to its anisotropic rigidity and corresponds to
an infinitely strong twist-bend coupling. The double-stranded polymer is also studied in a confined geometry.
It is shown that when the polymer is restricted in a particular direction to a size less than the bare persistence
length of the individual strands, it develops zigzag conformations which are indicated by an oscillatory
tangent-tangent correlation function in the direction of confinement. Increasing the separation of the confining
plates leads to a crossover to the free behavior, which takes place at separations close to the bare persistence
length. These results are expected to be relevant for experiments that involve complexation of two or more stiff
or semiflexible polymers.

PACS number~s!: 87.15.By, 36.20.Ey, 61.25.Hq
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I. INTRODUCTION AND SUMMARY

There has been a lot of recent interest in physical prop
ties of biopolymers, ranging from elasticity of biopolym
networks and its use in the prediction of mechanical prop
ties of cells to direct visualization of single-chain propertie
Examples of important biological macromolecules who
physical properties have been recently studied are acti
double-stranded semiflexible protein polymer which for
an integral part of the cytoskeleton~mechanical structure! of
eukaryotic~e.g., fungi, plants, animals! cells; microtubules,
multistranded rigid and dynamic protein polymers whi
form one of the main components of the cytoskeleton
eukaryotic cells and play an important part in their organi
tion; DNA, which carries the genetic code of all living o
ganisms@1#.

Since many of the processes involved in cell functi
~e.g., DNA replication in cell division! require major struc-
tural changes of these biopolymers@2#, there is a need for
more microscopic but still analytically tractable models
such polymers that go beyond the simple picture of s
molecules as homogeneous elastic rods@3#. Motivated by
this, we study such a microscopic model, specifically look
for qualitative differences between the behavior of such m
ecules and simple wormlike chains@4#. In addition, most
analyses of the wormlike chain models of polymers ha
focused on ground state properties~long chains! or bulk
quantities@5#. It is interesting to look at the effects of fluc

*Present address: Blackett Laboratory, Imperial College, Pr
Consort Road, London SW2 2BZ, United Kingdom.
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tuations, spatial correlations,andfinite size on these systems
A double-stranded semiflexible polymer chain is the ba

structure of many biopolymers. Examples of double-stran
biopolymers are DNA and proteins such as actin. The mo
most used in the study of biopolymers is that of the worml
chain @4# in which the polymer flexibility~structure! is de-
termined by a single length, the persistence lengthl p ,
which measures the tangent-tangent correlations. For
ample, DNA has a persistence lengthl p'50 nm while for
actin l p'17 mm. These biopolymers are known to have
complex ‘‘twisted’’ structure. The multistranded nature
these polymers is also not taken into account in a sim
wormlike chain model. It is not clear if such a fine structu
will have an effect on the global properties of these objec
A possible effect of such fine structure is what we attemp
study in this article. Our model is, in a sense, microsco
because the interaction between the bend and twist deg
of freedom is aresult. This is fundamentally different from
previous approaches@3#, which try to include the twist de-
grees of freedom by adding extra terms to the free energ

In a previous report@7# we studied a version of the rail
way track model of Everaers-Bundschuh-Kremer@6# for a
double-stranded semiflexible polymer, embedded in
d-dimensional space for arbitraryd. The main purpose of this
article is to present a detailed description of our theoret
and numerical calculations and in addition we present so
results on the effect of confinement on the statistical mech
ics of the ribbon polymer@8#. Excluded volume and electro
static interactions have been ignored throughout.

We find that the system has qualitatively different pro
erties in the low temperature and high temperature regim
in contrast to what one might naively expect from an inh
e

5488 ©2000 The American Physical Society
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ently one-dimensional system with local interactions a
constraints. The tangent-tangent correlation function dec
exponentially in the whole range of temperatures with
‘‘tangent-persistence length’’l TP that has a very slow tem
perature dependence, and whose scale is determined b
~bare! persistence length of a single strandl p5k/kBT (k is
the bending stiffness of a single strand!. Note that it is inde-
pendent ofa, the separation of the two strands, which is t
other relevant length scale in the problem. However, the c
relation function of the bond-director field, defined as a v
tor that determines the separation and coupling of the
strands of the combined polymer system, has different
havior below and above the temperatureT3.4.27k/dkBa.
While it decays purely exponentially forT.T3 , there are
additional oscillatory modulations forT,T3 . The related
‘‘bond-persistence length’’l BP does not change appreciab
at high temperatures, where its scale is again set byl p alone.
In the low temperature phase, however,l BP does show a
temperature dependence. In particular,l BP;l p

1/3a2/3}T21/3

for T;0, while l BP;l p for T;T3 . Similarly, the ‘‘pitch’’
H, defined as the period of oscillations in the low tempe
ture regime, changes drastically with temperature, rang
from H;l BP;l p

1/3a2/3 nearT50 to H;0 nearT5T3 . At
T50 we regain a flat ribbon that has true long-range orde
both the tangent and bond-director fields. The ribbon is
sentially a rigid rod. As we approachT50, the persistence
lengths and the pitch diverge with the scalingH;l BP

;l TP
1/3.

The spontaneous appearance of a short-range twist s
ture may be understood in the language of the homogen
rod models@3# as a local twist-bend coupling, which is ob
served up to a screening lengthl BP that lies betweena and
l p . We find that the anisotropy in the rigidity of a ribbo
results in a ‘‘kink-rod’’ structure, in which the ribbon is a
every point along its contour either twisted and unbent~rod!
or bent and untwisted~kink!. This inhomogeneous behavio
is in sharp contrast with uniform wormlike chain behavio
and can be interpreted as an infinitely strong twist-bend c
pling. This structure is, however, screened~i.e., decays to
zero! on long length scales due to the fact that the ribbon
a one-dimensional system with short-range interactions.
short-range twist order and the kink-rod structure will na
rally disappear whena;l p corresponding to the tempera
ture T3 . We also observe a twist-stretch coupling.

We also study the effects of confinement on the doub
stranded polymer. We enforce the confinement to a box
size R as an additional constraint. ForR@l p , we recover
the behavior of free double-stranded semiflexible polym
@7#. In particular, the tangent-tangent correlation has a pu
exponential decay with a characteristic length scale of or
l p , while the bond-director field develops a crossover t
phase with oscillatory correlations. AsR is decreased, ther
is a crossover to a phase with oscillatory tangent-tang
correlations aboutR;l p . For R!l p , we find that both the
persistence length in the perpendicular directionl ' and the
characteristic oscillation lengthl scale as (l pR2)1/3, which
is considerably smaller thanl p . The same crossover in th
bond-director field also persists in this limit, and, in partic
lar, there is a regime in which both the tangent and the bo
director correlations are oscillatory.
d
ys
a

the

r-
-
o
e-

-
g

n
s-

c-
us

,
u-

s
e

-

-
of

s
ly
er
a

nt

-
d-

We introduce and define our model in Sec. II, and th
describe a mean field approach in Sec. III that can be use
obtain closed form expressions for various correlation fu
tions. In Sec. IV we discuss a physical argument for
results we obtain using a plaquette model. In Sec. V
describe some extensive molecular dynamics/Monte C
simulations, which we use to calculate the correlation fu
tions, and compare them with the mean field results of S
III. We discuss the thermal kink-rod structure of stiff ribbon
in Sec. VI, and the effects of confinement on the conform
tions of ribbon polymers in Sec. VII. Finally, Sec. VIII sum
marizes our results and the limitations of our approach.

II. RAILWAY TRACK MODEL

To study the effect of a double structure on semiflexib
polymers, we consider a version of the railway track mo
of Everaers-Bundschuh-Kremer@6#. In our approach, we are
able to consider polymers embedded in ad-dimensional
space for arbitraryd. The system is composed of two sem
flexible chains, each with rigidityk, whose embeddings in
d-dimensional space are defined byr1(s) and r2(s). The
Hamiltonian of the system can be written as the sum of
Hamiltonians of two wormlike chains:

H5
k

2E dsF S d2r1~s!

ds2 D 2

1S d2r2~s!

ds2 D 2G . ~1!

We assume that the individual strands~that make up the
double-stranded polymer! are inextensible: (dr1 /ds)2

5(dr2 /ds)251. The ribbon structure is then enforced b
having r2(s8) separated fromr1(s) by a distancea, i.e.,
r2(s8)5r1(s)1ab(s), whereus2s8u can be nonzero but is
small. We have defined a bond-director fieldb(s), which is a
unit vector perpendicular to both strands~see Fig. 1!. The
chains are assumed to have permanent bonds~such as hydro-
gen bonds! that are strong enough to keep the distance
tween the two strands constant. In Ref.@6#, it is argued that
the relevant constraint on the system would then require
the arclength mismatch between the two strands in a b
configuration should be very small. We can calculate
arclength mismatch for the bent configuration asDs

FIG. 1. The schematic of the double-stranded semiflexible po
mer of two chains separated by a distancea. Note the bond-director
field b(s).
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5490 PRE 62RAMIN GOLESTANIAN AND TANNIEMOLA B. LIVERPOOL
5ur2(s)2r1(s)1ab(s)u, where a is the separation of the
strands. We impose the constraint as a hard one, namely
setDs50 as opposed to Ref.@6#. Physically this means we
do not allow bends in the plane of the ribbon. These be
are not important ind.2 because as we shall see the low
length scale will be set by the ‘‘pitch,’’ which will make th
in-plane fluctuations of the ribbon irrelevant@6#.

We can argue that the simplifying assumption does
change the behavior of the system. If we impose a soft c
straint as in Ref.@6# using an energy term like (k/2)*(Ds)2,
we can see that the lengthl 5(k/ka2)1/2 determines two dif-
ferent regimes; the interesting one beingL@ l (L is the
length of the chains!. Hence, our hard constraint in fact on
restricts us to the case of interest.

We implement the constraintDs50 by introducing the
‘‘mid-curve’’ r (s):

r1~s!5r ~s!1
a

2
b,

~2!

r2~s!5r ~s!2
a

2
b.

In terms of the tangent to the mid-curvet5dr /ds, which we
call the tangent-director field, and the bond-directorb, the
Hamiltonian of the system can now be written as

H5
k

2E dsF2S dt~s!

ds D 2

1
a2

2 S d2b~s!

ds2 D 2G , ~3!

subject to the exact~local! constraints

S t6
a

2

db

dsD
2

51, b251,

~4!

S t6
a

2

db

dsD •b50.

For a weakly bent ribbon, the Hamiltonian in Eq.~3! can be
conveniently thought of as having two major contributions
bending energyHb ~the first term!, and a twisting energyHt
~the second term!.

III. MEAN FIELD THEORY: FREE CHAINS

It is well known that the statistical mechanics of semifle
ible chains are difficult due to the constraint of inextensib
ity. Various approximation methods have been devised
tackle the problem. A successful scheme that somehow m
ages to capture the crucial features of the problem is to
pose global~average! constraints rather than local~exact!
ones@9–13#. This approximation is known to be good fo
calculating the average end-to-end length. It can be used
the probability distribution of the end-to-end length only
the persistence length is much less than the chain lengt
that the chain conformation can be considered isotropic.
can get good insight into the approximation scheme by c
sidering the fact that it corresponds to a saddle-point ev
ation of the integrals over the Lagrange multipliers, whi
are introduced to implement the constraints@12,13#. In this
sense, it is known to be a ‘‘mean field’’ approximation
we
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spirit. One can then go further by considering the effect
fluctuations on this mean field result. The power of this a
proach is that one can easily calculate quantities that turn
to be very difficult if the constraints are required to ho
exactly @5#.

To study the effect of fluctuations, we have performed
systematic 1/d expansion~sketched in the Appendix! @14#.
We see that no divergent behavior appears when we ca
late the diagrams of the two-point correlation functions. T
means that the mean field behavior of these functions
least, will not change due to fluctuations, although it does
preclude differences in higher order correlation functions

With the above discussion as justification, we apply t
same approximation scheme to our problem as defined
Sec. II: The local constraints in Eq.~4! are relaxed to globa
ones. This can be done by adding the corresponding ‘‘m
terms’’ to the Hamiltonian,

Hm

kBT
5E dsF b

l p
S t2

a

2

db

dsD
2

1
b

l p
S t1

a

2

db

dsD
2

1
ca2

4l p
3

b2

1
e

l p
S t2

a

2

db

dsD •b1
e

l p
S t1

a

2

db

dsD •bG , ~5!

whereb, c, ande are dimensionless constants. The partiti
function is then given by

Z@J,K #5E Dt~s!Db~s!expS 2
H1Hm

kBT

1E ds@J~s!•t~s!1K ~s!•b~s!# D . ~6!

We next determine the constants self-consistently by
manding the constraints of Eq.~4! to hold on average, where
the thermal average is calculated by using the total Ham
tonian H1Hm . Note that in choosing the above form w
have implemented the ‘‘label symmetry’’ of the chain
namely, that there is no difference between two chains. I
convenient to take the limit of an infinitely long chain an
perform the functional integrals in momentum space. T
Fourier transforms are defined asÃ(q)5*dsexp(iqs)A(s).
We have

Z@ J̃,K̃ #5E Dt̃~q!Db̃~q!expF2
1

2E dq

2p

3@ t̃~2q!,b̃~2q!#•M̄ ~q!•S t̃~q!

b̃~q!
D

1E dq

2p
~ J̃• t̃1K̃•b̃!G . ~7!

The Gaussian integration can then be easily performed
yields
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Z@ J̃,K̃ #5expS 1

2E dq

2p

3@ J̃~2q!,K̃ ~2q!#•M̄21~q!•S J̃~q!

K̃ ~q!
D D , ~8!

where

M̄ ~q!5F2l pq214b/l p 2e/l p

2e/l p l pa2q4/21ba2q2/l p1ca2/l p
3G .

~9!

The averages are easily obtained fromZ, for example,

^ t̃ i~q!•b̃ j~q8!&5
d2 ln Z

d J̃i~q!dK̃ j~q8!
.

The next step is to demand self-consistently that

^b~s!2&51,

K S t~s!6
a

2

db~s!

ds D 2L 51,

~10!

K S t~s!6
a

2

db~s!

ds D •b~s!L 50.

The self-consistency leads to the following set of equati
for the constantsb, c, ande:

1

4A2b
1

a2Ac

4dl p
2

5
1

d
,

c~b1Ac!5
d2l p

4

2a4
, ~11!

e50.

The above equations, which are nonlinear and difficult
solve exactly, determine the behavior ofb andc as a function
of u5a/l p . We have solved them numerically ind53 and
the solutions are given in Fig. 2. One can solve Eq.~11!
analytically in two limiting cases. Foru!1 we find b
5d2/32 andc5(d/A2)4/3u28/3, whereas foru@1 we find
b5d2/8 andc54/u4. In Fig. 2, the behavior ofb and c is
plotted as a function ofu. Note thatu is proportional toT and
can be viewed as a measure of temperature.

We can then calculate the correlation functions. For
tangent-tangent correlation one obtains
s

o

e

^t~s!•t~0!&5
d

4A2b
expS 2A2b

s

l p
D , ~12!

whereas for the bond-director field one obtains

^b~s!•b~0!&5
dl p

2

2a2Ab22c
Fexp@2~b2Ab22c!1/2~s/l p!#

~b2Ab22c!1/2

2
exp@2~b1Ab22c!1/2~s/l p!#

~b1Ab22c!1/2 G . ~13!

The tangent-tangent correlation@Eq. ~12!# is exactly what we
obtain for a single wormlike chain, and implies uniform b
havior for all temperatures. Equation~13!, on the other hand
indicates a change of behavior atb25c for the bond-director
correlation. The correlation is overdamped forb2.c ~high
temperatures!, while it is underdamped~oscillatory! for b2

,c ~low temperatures!. The interesting pointb25c happens
for uc516/(11A2)3/2d.4.27/d, which leads to the value
for T3 quoted above~see Fig. 2!. We also find a divergence
in the specific heatCV5]2F/]T2 where F52kBT ln Z at
T3 . It should be noted that it is not a thermodynamic pha
transition in the sense of long-range ordering and bro
symmetry. It is a crossover that appears due to compe
effects, and the transition is from a state with some sh
range order to a state with a different short-range ord
Similar phenomena have been observed in Ising-like s
systems with competing interactions@15# and the crossove
~transition! point corresponds to a type of ‘‘Lifshitz point’
for a one-dimensional~1D! system.

It is interesting to study the bond-director correlation
the limiting caseb2!c, which corresponds to relatively low
temperatures. Using the asymptotic forms forb and c, one
obtains

FIG. 2. The solution of the self-consistent equations for
constantsb and c as functions ofu5a/l p in d53. The valueuc

.4.27/d corresponds to the transition point.
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^b~s!•b~0!&5A2 expF2S d

4l pa2D 1/3

sG
3sinF S d

4l pa2D 1/3

s1
p

4 G ~14!

for very low temperatures. From the above expressions
the correlation functions, one can read off the persiste
lengths l TP;l p and l BP;(l pa2)1/3, and the pitchH
;(l pa2)1/3.

From the tangent-tangent correlation function, we can c
culate the end-to-end distance. It yields

^@r ~s!2r ~0!#2&5E
0

sE
0

s

ds1ds2^t~s1!•t~s2!&

5
dl p

4b S s2
l p

A2b
~12e2A2bs/l p!D ,

~15!

which is similar to wormlike chains. It interpolates betwe
the limiting behaviors of random walks@;(dl p/4b)s# for
s@l p and rods@;(d/4A2b)s2# for s!l p . However, it is
interesting to note that there is a shrinking in the length
the rod by a factor of (d/4A2b)1/2, which varies smoothly
from 1 at a!l p to 1/A2 at a@l p . This implies that a
polymer made up of two inextensible strands is alwa
‘‘slightly extensible’’ at any finite temperature, due to th
presence of twist fluctuations. This is exactly the twi
stretch coupling studied by various authors using hom
enous elastic rod models@3#. Note that in our model this
coupling is aresult, as opposed to the elastic rod models
which it must be added by hand. A microscopic model p
posed by O’Hernet al. @16#, which describes DNA as a stac
of plates, also predicts a twist-stretch coupling.

A simple scaling argument can account forl TP and l BP
in the low temperature regime. Consider applying a unifo
bend of radius of curvaturel to a section of ribbon of length
l without twisting it. The corresponding bending ener
~calculated usingHb) is given by Eb;kBTl p /l. We can
then estimatel TP by finding the lengthl for which the
bending energyEb becomes comparable tokBT. Similarly,
applying a uniform twist per length 2p/l to a section of the
ribbon of lengthl without bending will cost a twist energ
Et5kBTl pa2/l3 ~calculated usingHt). The wavelengthl
at which the twist energyEt becomes comparable tokBT
gives l BP.

IV. PLAQUETTE MODEL AND COMPETITION

The nature of competition in our double-stranded polym
system can be understood using a plaquette model. We
coarse-grain the ribbon to a length scale (l ) where we can
consider it to be made up of plaquettes which are joined
to form a ribbon~see Fig. 3!. We can then define effectiv
coarse-grained bondB̂i and tangentT̂ i director fields for
each plaquette.

The energy expression corresponding to bends co
or
e

l-

f

s

-
-

-

r
an

p

es

from the product of the tangent directors of the neighbor
plaquettes:

bHb52
l p

l (
i

T̂ i•T̂ i 11 . ~16!

In a spin analogy, this corresponds to a classical Heisenb
ferromagnet in 1D, and has no competition .

If we choosel !l p in the coarse-graining process, w
can safely assume that the ribbon is rodlike~we freeze out
the bending modes! and that it has only twist fluctuations
We may then writeb(s)5ê1cosu(s)1ê2 sinu(s) where the
~fixed! unit vectorsêi ( i 51,2) span the plane perpendicul
to the rod. Rewriting Eq.~3! in terms of u(s) and imple-
menting the constraints, we obtain

bH5
l pa2

4 E dsS u]s
2uu21u]suu41

a2u]s
2uu2u]suu2

42a2u]suu2 D ,

~17!

subject to the constraintu]su(s)u,2/a. Note that the lowest
order contribution to the twist potential starts from a quar
term.

We can now expand the nonlinear term in the abo
Hamiltonian and perform the coarse graining, in the fram
work of a perturbation theory, by integrating out the mod
between 1/l and 1/a in the momentum shell. We can the
determine the form of the coarse-grained Hamiltonian a
calculate the renormalized coupling constants. We keep o
terms up to second~Gaussian! order, which is a good ap
proximation forl ,(l pa2)1/3, and obtain

FIG. 3. Coarse-grained model—like and unlike twists meeti
The bond vectorB is rotating about the tangent vector in the sam
direction for like twists and the opposite direction for unlike twis
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bHt52J1(
i

B̂i•B̂i 112J2(
i

B̂i•B̂i 12 ~18!

where

J15c01c1

l pa2

l 3 and J252c2

l pa2

l 3 ,

whereci ( i 50, . . . ,2) areconstants of order unity. In con
trast to the bending energy, the effective twist energy is fr
trated due to the opposite signs ofJ1 andJ2 @15#. In the spin
analogy, this would correspond to a model with next nea
neighbor competing interactions similar to the so-called a
next nearest neighbor interaction~ANNNI ! model, which de-
velops oscillations for certain values of the ratio2J2 /J1 ~of
order 1! @15#. This corresponds tol ;(l pa2)1/3, and we can
thus account for the pitchH;(l pa2)1/3.

The competition is present only at nonzero temperatu
and is merely due to topological constraints of the ribb
Another, more physical way of understanding this comp
tion is to consider the interaction between two neighbor
twisted regions. It is easy to see that twists of opposite s
meeting at an edge tend to unwind~annihilate! each other
@17#, while twists of the same sign are trapped when th
meet; they do not annihilate each other and add up~see Fig.
3!.

V. SIMULATION

An intriguing feature of the behavior of this model is tha
although the ground state (T50) configuration of the system
is a flat ribbon, and supports no twists, upon raising
temperature, a twisted structure with short-rangetwist order
develops. We have confirmed this by performing extens
molecular dynamics~MD!/Monte Carlo~MC! simulations of
double-stranded semiflexible polymers. A bead-spring mo
with bending and stretching energies was used. We c
bined a velocity Verlet MD algorithm coupled to a heat ba
with an off-lattice pivot MC algorithm. The MD was usefu
for equilibrating the shorter length scales and MC for t
long length scales.

We used a triangular lattice to discretize the ribbon~see
Fig. 4!. The position of thei th bead isr i and we assume al
the beads have massm. The two chains making up th
double strands join the odd ($1,3,5, . . . ,799%) and even
($2,4,6, . . . ,800%) beads together. The potential energy
given by

U@$r i%#

kBT
5 (

i 51

N22

ks@~r i 112r i !
22l 0

2#1ks@~r i 122r i !
22l 0

2#

2kb cosu i , ~19!

FIG. 4. The schematic of the double-strand model used in
simulation.
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where

cosu i5~r i 122r i !•~r i2r i 22!.

We have a bending constantkb only for the springs joining
beads on the same chain and a stretching constantks for
every spring. We also have a short-range repulsion betw
nearest neighbor beads. The MD simulation is performed
integrating a Langevin equation for every bead,

m
d2r i

dt2
1G

dr i

dt
52“ r i

U1 f i , ~20!

where f i is a random number chosen from a range set bT
representing the heat bath. The simulations were perform
at kBT51. We are in the dissipative regime so we can igno
the inertial term. The friction term is set toG50.7 and the
noise is chosen so as to satisfy the fluctuation dissipa
theorem. The equilibrium bond length was set tol 051.6.
The simulations were done withks51000.

We performed in general 106 integration time steps fol-
lowed by 104 attempted pivot moves. A pivot move is a
attempt to rotate a portion of the chain by a small rand
angle around a randomly chosen bead. The MC part is d
with the usual Metropolis algorithm accepting pivot mov
with a probability exp(2DU/kBT). This mixed MD/MC pro-
cedure was repeated 103 times until the configurations wer
equilibrated. Equilibration was checked by starting fro
crumpled chains and fully extended chains and verifying t
the same values for radius of gyration and correlation fu
tions were obtained. We simulated double-stranded rib
chains of 23400 monomers. The simulations were pe
formed on a Cray T3D with 128 processors allowing us
simulate 128 chains in parallel.

Typical equilibrated polymer configurations, shown he
in Figs. 5–7, suggest that at low temperatures the poly
can be viewed as a collection of long, twisted~straight! rods
that are connected by short, highly curved sections of ch
which we call ‘‘kinks,’’ as opposed to a smooth wormlik
conformation. This structure melts at higher temperature

We plot the ^b(s)•b(0)& correlation function from the
simulation in Fig. 8. ForT.T3 we obtain simple exponen

e

FIG. 5. Typical conformations from MD/MC simulations of
ribbon made up of two chains of 400 monomers aboveT3 , kb

51.
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tial decay but forT,T3 we see an oscillation in the corre
lation function in agreement with Eq.~13!.

We plot the ^t(s)•t(0)& correlation function from the
simulation in Fig. 9. We see the signature exponential de
of the correlation function of wormlike chains from whic
we can estimate the effective persistence length. The

FIG. 6. Typical conformations from MD/MC simulations of
ribbon made up of two chains of 400 monomers nearT3 , kb510.

FIG. 7. Typical conformations from MD/MC simulations of
ribbon made up of two chains of 400 monomers belowT3 , kb

5100.
y

ti-

mated persistence lengths areLp52.9960.01,25.0
60.005,179.060.001, respectively.

VI. KINK-ROD STRUCTURE

We show typical equilibrated conformations above, ne
and belowT3 in Figs. 5–7. The snapshots of the polym
configurations suggest that at low temperatures the poly
can be viewed as a collection of hard~straight! twisted rods
that are connected by some kinks. This picture can be
counted for using a simple argument. We can model
system of two semiflexible polymers subject to the constra
of constant separation as a semiflexible ribbon, i.e., a se

FIG. 8. The^b(s)•b(0)& correlation function measured in th
simulations for temperatureskb51, 5, and 50 corresponding t
b2.c, b2'c, andb2,c. The averages were done over;104 sta-
tistically independent samples. The error bars are the size of
symbols.

FIG. 9. The ^t(s)•t(0)& correlation function measured in th
simulations for temperatureskb51, 10, and 50 corresponding t
b2.c, b2'c, andb2,c. The averages were done over;104 sta-
tistically independent samples. The error bars are the size of
symbols.
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flexible linear object with anisotropic rigidities whos
Hamiltonian reads

Hani5
1

2E ds(
i , j

k i j S dt

dsD
i
S dt

dsD
j

, ~21!

where k i j 5k ibibj1k'(d i j 2t i t j2bibj ) determines the ri-
gidity anisotropy of the ribbon, corresponding to bendi
parallel or perpendicular to the bond-director field. The r
bon structure would requirek i@k' . @To be consistent with
the hard constraint~see above! of constant separation of th
polymers, we should take the limit of infinitek i .# The par-
tition function of a semiflexible ribbon in thek i→` limit
can be written as

Zrib5 lim
k i→`

E Dt~s!Db~s!expF2
k'

2kBTE dsS dt

dsD
2

1
k i2k'

2kBT E dsS dt

ds
•bD 2

1H8@ t,b#G
5E Dt~s!Db~s!dS dt

ds
•bDexpF2

k'

2kBTE dsS dt

dsD
2

1H8@ t,b#G , ~22!

in which H8@ t,b# controls the dynamics ofb, and the func-
tional d function enforces the constraint

dt~s!

ds
•b~s!50 ~23!

to hold exactly at every point of the ribbon. Recalling th
dt/ds5H(s)n from the Frenet-Seret equations@18#, where
H(s) is the curvature at each point andn is the unit normal
vector to the curve, we can write the constraint as

H~s!n~s!•b~s!50. ~24!

This constraint requires that at each point eitherH(s)50,
which corresponds to a straight~rodlike! segment that can b
twisted, or n(s)•b(s)50, which corresponds to a curve
~kinklike! region where the the bond director is locked in
the perpendicular direction to the curve normal, i.e.,
binormal.

We expect the~core! length of the kink regions to be ver
short at low temperatures, as observed in Fig. 7. We note
the conformational entropy of the chain is due to the degr
of freedom in the kink regions, whereas the twist entro
comes from the degrees of freedom in the rod segments.
average separation between neighboring kinks is of the o
of the persistence length. The ribbon thus tends to keep
rod segments as long as possible to maximally explore
twist degrees of freedom, while it can recover the same c
formational entropy as a wormlike chain from pivotal mov
in the kink regions. This explains the kink-rod structure
low temperatures (a!l p). As the temperature increases, t
kinks get closer to each other, until at some temperature t
average separation becomes comparable to their sizel p
;a), and the kink-rod pattern disappears.
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This analysis can be understood in the context of
mean field (b,t) model above. By observing that at low tem
peraturesl BP!l TP, one can imagine that there are, rough
speaking, rodlike~straight! segments of lengthl TP, each
supporting a number of shorter segments of lengthl BP that
are twisted but decorrelated with one other. One can see
l BP is equal to the length scalel at which the strands un
dergo conformational fluctuations of the order of their se
ration: a25^r 2&[*1/ldq/l pq4.l3/l p . Hence, segments
of lengthl BP are straight~for a!l p). However, fluctuations
of order a are sufficient to wash out the memory of twis
The anticorrelation in fact comes from the frustration,
explained above.

As the temperature is raised, the number of twisted r
in each segmentN5l TP/l BP decreases very quickly, until i
saturates to unity atT5T3 . For higher temperatures th
mechanism changes, and the bond correlations are cut o
the tangent fluctuations. Hence, the short-range twist o
does not survive anymore. All the main features of the ab
picture have also been observed in the simulation.

A kink-rod structure similar to the one discussed here
indeed been observed in experiments done on actin filam
@19#. Actin is a charged polymer, and the mutual electrosta
repulsion of its different segments plays a major role in
structural stiffness. It is well known, however, that the intr
duction of multivalentcounterions~ions of opposite charge
that are necessary to neutralize the solution! can reduce the
electrostatic repulsion, and even lead to attraction betw
like charged polymers, or different like charged segments
a same polymer@20#. In a recent experiment, Tanget al. @19#
used fluorescence microscopy techniques to imagecon-
densed~or collapsed! actin bundles that are formed due
the presence of multivalent counterions. Snapshots of
bundles, showing their typical conformations, are shown
Fig. 10. A remarkable feature in the observation was
presence of sharp corners, which connect relatively stra
segments of the actin bundles, as can be seen in Fig.
Tang et al. @19# observed that this feature is present on
when the bundle is made up of two or more filaments
actin, and is absent when there is only a single filament in
condensate.

It is plausible to assume that the observed kink-rod str
ture can be accounted for by similar arguments to the
developed above. The only difference is the fact that
structure in the experimental case is a ring, as opposed
chain with free ends. However, we do not expect this c
straint to affect the argument, because the inherent comp
tion between twist and bend degrees of freedom is local.
course, more experimental efforts are needed to rule
other possible scenarios for the formation of the kinks, su
as defects in the packing of more than one filament, seque
disorder, or metastable effects due to the dynamics of
collapse.

VII. MEAN FIELD THEORY: CONFINED CHAINS

In this section, we study the effect of confinement
double-stranded semiflexible polymers. We confine
double-stranded polymer in ad'-dimensional subspace to
box of sizeR, while leaving it free in the remainingdi5d
2d' dimensions.
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In terms of the tangent to the mid-curvet5dr /ds and the
bond directorb, the total Hamiltonian of the system can no
be written as

Hconf

kBT
5

H1Hm

kBT
1

g

l p
3E dsr'

2 , ~25!

whereg is a dimensionless constant in addition tob, c, ande
defined in Sec. III. The constants will be determined se
consistently by demanding that the relevant constraints h
on average: inextensibility of the individual strands, const
separation between the chains, the bond director being
mal to the strands, and confinement of the polymer to a
of size R in d' dimensions@^r'

2 (s)&5R2#. This final con-
straint is valid as long as the chain length is much larger t
R. We obtain the following set of equations forb, c, e, andg:

Ac
a2

4l p
2

1Ag
R2

l p
2

1
di

4A2b
51,

c~b1Ac!5
d2l p

4

2a4
,

g~b1Ag!5
d'

2 l p
4

32R4
,

FIG. 10. Snapshots of condensed actin rings due to the pres
of multivalent counterions, from the experiment by Tanget al. @19#.
The kink-rod structure is manifest, in bundles with two or mo
filaments@19#.
-
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t
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n

e50. ~26!

Although the above nonlinear set of equations is very di
cult to solve, we can get the behavior of the solutions
looking at the asymptotics in the limiting cases, as summ
rized in Table I. The full solutions are in fact smooth inte
polations between the asymptotics. We solved the equat
numerically for the experimentally relevant cased'51 and
d53.

Having determined the constants self-consistently, we
calculate the correlation functions. For the tangent-tang
correlation in the parallel direction one obtains

^ti~s!•ti~0!&5
di

4A2b
expS 2A2b

s

l p
D , ~27!

whereas for the perpendicular direction one obtains

^t'~s!•t'~0!&5
d'

8Ab22g
F ~b1Ab22g!1/2

3expS 2~b1Ab22g!1/2
s

l p
D

2~b2Ab22g!1/2

3expS 2~b2Ab22g!1/2
s

l p
D G . ~28!

Similarly, for the bond-director field it yields

^b~s!•b~0!&5
dl p

2

2a2Ab22c
S exp@2~b2Ab22c!1/2~s/l p!#

~b2Ab22c!1/2

2
exp@2~b1Ab22c!1/2~s/l p!#

~b1Ab22c!1/2 D , ~29!

while the rest of the two-point functions~the cross terms! are
zero. The parallel component of the tangent-director corre
tion function decays purely exponentially. However, the c
relation function of the perpendicular component of t
tangent-director field, as well as that of the bond-direc
field, develop a crossover from purely exponential decay
b2.g andb2.c, to oscillatory decay forb2,g andb2,c,

ce

TABLE I. The limiting behavior of the confined polymer
Asymptotic behavior of the solutions of Eq.~26!.

b c g

(1) R

l p
!1

a

l p
!1

di
2

32
S d

A2

l p
2

a2 D 4/3 S d'

4A2

l p
2

R2D 4/3

~2! R

l p
@1

a

l p
!1

d2

32
S d

A2

l p
2

a2 D 4/3
d'

2

d2

l p
4

R4

~3! R

l p
!1

a

l p
@1

(d1di)
2

32
16d2

(d1di)
2

l p
4

a4 S d'

4A2

l p
2

R2D 4/3

~4!
R

l p
@1 a

l p
@1

d2

8
4l p

4

a4
d'

2

4d2

l p
4

R4
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respectively. The phase diagram of the system in the spac
dimensionless parametersR/l p anda/l p , is shown in Fig.
11. The boundaries between different regions are obta
from solutions of Eq.~26!.

It is instructive to examine the perpendicular compon
of the tangent-director correlation function in the limitin
caseb2!g, which corresponds toR/l p!1 ~see Table I!.
Using the asymptotic forms forb andg, one obtains

^t'~s!•t'~0!&5S d'
2

8A2

R2

l p
2D 1/3

3expF2S d'

16l pR2D 1/3

sG
3sinF S d'

16l pR2D 1/3

s1
p

4 G . ~30!

The effects of confinement are best seen in this limiting
pression. The persistence length of the polymer in the c
fined directions is reduced tol ';(l pR2)1/3. This ‘‘deflec-
tion length’’ @5# is in fact the length at which roughening o
a semiflexible chain of bare persistence lengthl p becomes
comparable to the confinement size~or separation of the con
fining walls! R: R25^r'

2 &5*1/l '
dq/l pq4. In other words,

the presence of the boundaries provides another compe
mechanism to cut off tangent correlations in the directions
confinement. Moreover, the oscillatory form of the corre
tion function with a periodl5l ';(l pR2)1/3 implies a

FIG. 11. The phase diagram as a function ofv5R/l p and u
5a/l p calculated numerically using Eq.~26!. We work in three
dimensionsd53 and with confinement in one directiond'51.
of

ed

t

-
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sinusoidal packing of the polymer in the confining cavit
where again the size of the oriented segments~the period of
the oscillations! is set by the walls cutting off the roughnes
of the polymer. As seen in Sec. VI, a semiflexible ribb
develops a kink-rod structure at finite temperatures~due to
the strong anisotropy in rigidity!, in which rodlike segments
~about a persistence length long! are connected by rathe
sharp kinks with a core size of the order of the diameter
the ribbon. If such a structure is restricted to a size less t
the bare persistence length, new kinks have to be create
the confining walls to squeeze the ribbon into the availa
space. This therefore leads to the compact zigzag confor
tion of kinks and rods and the subsequent oscillatory tang
correlations.

It is straightforward to calculate the free energy of t
system. We find

F

kBT
5

F0~b!

kBT
1

L

2l p
~~b1Ab22c!1/21~b2Ab22c!1/2

1~b1Ab22g!1/21~b2Ab22g!1/2!. ~31!

It is interesting to examine the limiting behavior of the fre
energy as a function ofR. We obtain

F~R!

kBT
.

L

2l p
3H ~d'/2!1/3~ l p /R!2/3 for R/l p!1

~ad' /d2!~ l p /R!2 for R/l p@1,
~32!

wherea is a smoothly varying numerical coefficient rangin
from a54 for a/l p!1 to a51 for a/l p@1. The free en-
ergy, interestingly, interpolates between the steric repuls
of non-self-avoiding flexible polymers confined toR @21#,
which has 1/R2 behavior, and the Helfrich undulation fre
energy of stiff polymers confined toR @5,22#, which has
1/R2/3 behavior@23#.

Using the above results, we now analyze some recent
periments by Ottet al. @24# who measure the persistenc
length of actin filaments confined between microsco
slides. The separation of the slides was of the order oR
51 mm and they found a persistence length~assuming a
two-dimensional wormlike chain! of Lp

0516.7 mm. These
results are in the regime addressed by our model. For v
small but finiteR the chain fluctuates between the two plate
From the analog of Eq.~30! calculated for single-strande
semiflexible polymers, we find̂t'

2 &5(R/Lp
(0))2/3/2. There-

fore one must include the fluctuations perpendicular to
confining plates in the calculation of the true persisten
length. This implies that on average the polymer makes
angleu given by sinu5A^t'

2 & with the plates whereu,1.
One therefore has a corrected persistence lengthLp

true

'Lp
(0)/cosu5Lp

(0)/A12^t'
2 &. We therefore estimate for thos

experiments a correction of approximately 4%, i.e.,Lp
true

517.4 mm.

VIII. CONCLUSION

In conclusion, we have calculated the properties of a w
defined model of a double-stranded semiflexible polymer
shown nontrivial differences between the high, low, and z
temperature behavior. At highT we find normal wormlike
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chain behavior and at lowT we observe a kink-rod structur
with short-range twist order while atT50 we have a flat
ribbon.

In the analytical approach, the only approximation w
have made is the relaxing of local constraints to global on
Using a systematic1/d expansion~see the Appendix! we
have shown that to calculate the two-point correlation fu
tions this is a valid approximation, as higher order corr
tions only change the values of parameters but do not cha
the analytic form of the functions. Extensive MD/MC sim
lations confirm the analytical results.

We have also examined the effect of confinement on
behavior of semiflexible double-stranded polymers, a
found four interesting regimes of the conformation and int
nal twist structure of these polymers, as summarized in
11: ~A! Weak confinement and relatively short bonds lead
free wormlike chain conformations with short-ranged tw
anticorrelations,~B! weak confinement and relatively lon
bonds give rise to free wormlike chain conformations a
twist disorder,~C! strong confinement and relatively sho
bonds yield sinusoidal packing of the chains and sh
ranged twist anticorrelations, and finally~D! strong confine-
ment and relatively long bonds lead to sinusoidal packing
the chains and twist disorder.

There are a number of advantages evident in our
proach. First, we introduce a microscopic model that rema
true to the chemical structure of many biomolecules. Seco
our approximatemethod of solving this model also lend
itself to the analysis of the fluctuations in the system and
studying intermediate-scale behavior as well as the gro
state ~long-length-scale! properties. Finally, this method
could be easily extended to describe multistranded obje
We expect that the effect of an intrinsic twist will change t
ground state but will not change any of the conclusions
our description, although we expect it to make the effect
persistence length much higher. We hope to address
questions in a subsequent publication.
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APPENDIX: 1 Õd EXPANSION

To justify the mean field approximations used in Secs.
and VII above, we perform a systematic 1/d expansion that
allows us to implement the constraints in a controlled w
Our approach is similar to the one successfully used
David and Guitter to study the crumpling transition of cry
talline membranes@14#. For simplicity, we consider a mor
primitive model of an elastic ribbon with the Hamiltonian
s.
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Hribbon

kBT
5

A

2E dsS dt

dsD
2

1
C

2E dsFdb

ds
2tS t•

db

dsD G
2

,

~A1!

in which the tangent and the bond-director fields are sub
to the following constraints:t251, b251, t•b50, and
b•(dt/ds)50 @Eq. ~23!#. A similar calculation with the more
realistic~and more complicated! Hamiltonian of Eq.~3! will
lead to essentially the same conclusions. The partition fu
tion of the ribbon can be calculated as

Z5E DtDbDl1Dl2Dl3Dl4e2S(t,b,l1 ,l2 ,l3 ,l4),

~A2!

with

S5
A

2E dsS dt

dsD
2

1
C

2E dsS db

dsD
2

1 i E dsFl1~s!~ t221!

1l2~s!~b221!1l3~s!~ t•b!1l4~s!S t•
db

dsD G , ~A3!

in which $la(s)% are the ‘‘stress’’ ~Lagrange multiplier!
fields enforcing the constraints. The integrations overt andb
are now Gaussian and can be performed to yield

Seff@l i #5
d

2
ln detF2A]s

212il1 il31 il4]s

il32 i ]sl4 2C]s
212il2

G
2 idE ds~l11l2!. ~A4!

Note that we have rescaledA,C, and$la(s)% by d. Extrem-
izing the effective action corresponds to the saddle-poin
mean field solution (d5`). The saddle-point equations yiel
i l̄151/(8A),i l̄25/(8C), andl̄35l̄450.

To proceed to the higher orders in 1/d, we need to calcu-
late thel propagators defined as

^la~s!lb~s8!&[
d2Seff

dla~s!dlb~s8!
U

saddle point

21

. ~A5!

A straightforward calculation then leads to

^l̃1~q!l̃1~2q!&5
A

8d
q21O~1!, ~A6!

^l̃2~q!l̃2~2q!&5
C

8d
q21O~1!, ~A7!

^l̃3~q!l̃3~2q!&5
A

2d
q21O~1!, ~A8!

^l̃4~q!l̃4~2q!&5
A1C

2d
q21O~1/q2!, ~A9!

^l̃3~q!l̃4~2q!&5
A

2d
~2 iq !1O~1/q!, ~A10!
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while all the others are zero. Note that we have kept only
large momentum limit, since we are interested in the lo
~short-distance! behavior of the Lagrange multipliers@14#.

The abovel propagators, the correlators for the tange
and bond fields

^ t̃ i~q! t̃ j~2q!&5
d i j

Aq211/~4A!
, ~A11!

^b̃i~q!b̃ j~2q!&5
d i j

Cq211/~4C!
, ~A12!

and the three-point vertices

^ t̃ i~q! t̃ j~q8!l̃1~2q2q8!&52id i j , ~A13!
.
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^b̃i~q!b̃ j~q8!l̃2~2q2q8!&52id i j , ~A14!

^ t̃ i~q!b̃ j~q8!l̃3~2q2q8!&5 id i j , ~A15!

^ t̃ i~q!b̃ j~q8!l̃4~2q2q8!&52q8d i j , ~A16!

as read from Eq.~A3!, could now be used to construct dia
grammatic expansions. Examining the two-point correlat
functions fort andb, we then find that the perturbative ex
pansions are well behaved~not singular!, and only correct
the numerical values of the coupling constants by fin
amounts at each order. We thus conclude that the mean
behavior corresponding to the saddle-point approximatio
qualitatively valid.
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