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The statistical mechanics of a ribbon polymer made up of two semiflexible chains is studied using both
analytical techniques and simulation. The system is found to have a crossover transition at some finite tem-
perature, from one type of short-range order to a fundamentally different sort of short-range order. In the high
temperature regime, the two-point correlation functions of the object are identical to wormlike chains, while in
the low temperature regime they are different due to a twist structure. The crossover happens when the
persistence length of individual strands becomes comparable to the thickness of the ribbon. In the low tem-
perature regime, the ribbon is observed to have a “kink-rod” structure with a mutual exclusion of twist and
bend in contrast to smooth wormlike chain behavior. This is due to its anisotropic rigidity and corresponds to
aninfinitely strong twist-bend coupling. The double-stranded polymer is also studied in a confined geometry.
It is shown that when the polymer is restricted in a particular direction to a size less than the bare persistence
length of the individual strands, it develops zigzag conformations which are indicated by an oscillatory
tangent-tangent correlation function in the direction of confinement. Increasing the separation of the confining
plates leads to a crossover to the free behavior, which takes place at separations close to the bare persistence
length. These results are expected to be relevant for experiments that involve complexation of two or more stiff
or semiflexible polymers.

PACS numbeps): 87.15.By, 36.20.Ey, 61.25.Hq

I. INTRODUCTION AND SUMMARY tuations, spatial correlationandfinite size on these systems.
A double-stranded semiflexible polymer chain is the basic
There has been a lot of recent interest in physical properstructure of many biopolymers. Examples of double-stranded
ties of biopolymers, ranging from elasticity of biopolymer biopolymers are DNA and proteins such as actin. The model
networks and its use in the prediction of mechanical propermost used in the study of biopolymers is that of the wormlike
ties of cells to direct visualization of single-chain properties.chain[4] in which the polymer flexibility(structurg is de-
Examples of important biological macromolecules whosetermined by a single length, the persistence length
physical properties have been recently studied are actin, which measures the tangent-tangent correlations. For ex-
double-stranded semiflexible protein polymer which formsample, DNA has a persistence length~50 nm while for
an integral part of the cytoskelet¢mechanical structuyeof ~ actin /,=17 um. These biopolymers are known to have a
eukaryotic(e.g., fungi, plants, animaigells; microtubules, complex “twisted” structure. The multistranded nature of
multistranded rigid and dynamic protein polymers whichthese polymers is also not taken into account in a simple
form one of the main components of the cytoskeleton ofwormlike chain model. It is not clear if such a fine structure
eukaryotic cells and play an important part in their organiza-will have an effect on the global properties of these objects.
tion; DNA, which carries the genetic code of all living or- A possible effect of such fine structure is what we attempt to
ganismg1]. study in this article. Our model is, in a sense, microscopic
Since many of the processes involved in cell functionbecause the interaction between the bend and twist degrees
(e.g., DNA replication in cell divisionrequire major struc- of freedom is aresult This is fundamentally different from
tural changes of these biopolymdi2], there is a need for previous approachds], which try to include the twist de-
more microscopic but still analytically tractable models of grees of freedom by adding extra terms to the free energy.
such polymers that go beyond the simple picture of such In a previous reporf7] we studied a version of the rail-
molecules as homogeneous elastic rg8k Motivated by  way track model of Everaers-Bundschuh-Krenié} for a
this, we study such a microscopic model, specifically lookingdouble-stranded semiflexible polymer, embedded in a
for qualitative differences between the behavior of such mold-dimensional space for arbitrady The main purpose of this
ecules and simple wormlike chaid]. In addition, most article is to present a detailed description of our theoretical
analyses of the wormlike chain models of polymers haveand numerical calculations and in addition we present some
focused on ground state propertileng chaing or bulk results on the effect of confinement on the statistical mechan-
quantities[5]. It is interesting to look at the effects of fluc- ics of the ribbon polymef8]. Excluded volume and electro-
static interactions have been ignored throughout.
We find that the system has qualitatively different prop-
*Present address: Blackett Laboratory, Imperial College, Princ@rties in the low temperature and high temperature regimes,
Consort Road, London SW2 2BZ, United Kingdom. in contrast to what one might naively expect from an inher-
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ently one-dimensional system with local interactions and
constraints. The tangent-tangent correlation function decays
exponentially in the whole range of temperatures with a
“tangent-persistence length”’ 1 that has a very slow tem-
perature dependence, and whose scale is determined by the
(barg persistence length of a single straig= «/kgT (x is

the bending stiffness of a single strantlote that it is inde-
pendent ofa, the separation of the two strands, which is the
other relevant length scale in the problem. However, the cor-
relation function of the bond-director field, defined as a vec-
tor that determines the separation and coupling of the two «
strands of the combined polymer system, has different be- ‘

havior below and above the temperatlre=4.27«/dkga.

While it decays purely exponentially foF>T, , there are fa2

additional oscillatory modulations fof<T, . The related FIG. 1. The schematic of the double-stranded semiflexible poly-
“bond-persistence length?’gp does not change appreciably mer of two chains separated by a distaacslote the bond-director

at high temperatures, where its scale is again setpglone.  field b(s).

In the low temperature phase, howevei;, does show a

temperature dependence. In particuﬁgp~/$’3a2’3ocT‘1/3 We introduce and define our model in Sec. Il, and then
for T~0, while /BPN/p for T~T, . Similarly, the “pitch” describe a mean field approach in Sec. Il that can be used to
H, defined as the period of oscillations in the low tempera-Obtain closed form expressions for various correlation func-
ture regime, changes drastically with temperature, rangin§ons. In Sec. IV we discuss a physical argument for the
from HN/BPN/"l)/3a2/3 nearT=0 toH~0 nearT=T, . At  results we obtain using a plaquette model. In Sec. V we
T=0 we regain a flat ribbon that has true long-range order irfl€scribe some extensive molecular dynamics/Monte Carlo
both the tangent and bond-director fields. The ribbon is esSimulations, which we use to calculate the correlation func-
sentially a rigid rod. As we approach=0, the persistence tions, and compare them with the mean field results of Sec.

Q

lengths and the pitch diverge with the scalifty~/gp I1l. We discuss the thermal kink-rod structure of stiff ribbons
N/%/s_ in Sec. VI, and the effects of confinement on the conforma-

The spontaneous appearance of a short-range twist struions of ribbon polymers in Sec. VII. Finally, Sec. Vil sum-
ture may be understood in the language of the homogeneoﬁgar'zes our results and the limitations of our approach.
rod modelg[3] as a local twist-bend coupling, which is ob-
served up to a screening lengthp that lies betweem and Il RAILWAY TRACK MODEL
/». We find that the anisotropy in the rigidity of a ribbon
results in a “kink-rod” structure, in which the ribbon is at
every point along its contour either twisted and unbeod)

To study the effect of a double structure on semiflexible
polymers, we consider a version of the railway track model
. . o . of Everaers-Bundschuh-Kremfs]. In our approach, we are
or bent and untwisteckink). This inhomogeneous behavior able to consider polymers embedded indalimensional

's in sharp contrast with uniform wormiike chain behavior, space for arbitrargl. The system is composed of two semi-
and can be interpreted as an infinitely strong twist-bend couj;

. ; . . flexible chains, each with rigiditye, whose embeddings in
pling. This structure is, however, screenge., decays to _d-dimensional space are defined by(s) and r,(s). The

zerg on long I_ength scales d_ue to the fact that the _ribbon 'Hamiltonian of the system can be written as the sum of the
a one-dimensional system with short-range interactions. Thﬁamiltonians of two wormlike chains:

short-range twist order and the kink-rod structure will natu-
rally disappear whem~ /7, corresponding to the tempera- 2 2 2 2
ture T, . We also observe a twist-stretch coupling. H= ff ds (d rl(s)) +(d rZ(S)) .

We also study the effects of confinement on the double- 2 ds? ds?
stranded polymer. We enforce the confinement to a box of
size R as an additional constraint. F&>/",, we recover We assume that the individual stranthat make up the
the behavior of free double-stranded semiflexible polymerslouble-stranded polymer are inextensible: dr;/ds)?
[7]. In particular, the tangent-tangent correlation has a purely= (dr,/ds)?=1. The ribbon structure is then enforced by
exponential decay with a characteristic length scale of ordehaving r,(s’) separated fronr,(s) by a distancea, i.e.,
/'»,» while the bond-director field develops a crossover to a,(s’) =r(s) +ab(s), where|s—s’| can be nonzero but is
phase with oscillatory correlations. ASis decreased, there small. We have defined a bond-director fiblg), which is a
is a crossover to a phase with oscillatory tangent-tangeninit vector perpendicular to both stran@iee Fig. 1L The
correlations abouR~/",. ForR</,, we find that both the  chains are assumed to have permanent béhzh as hydro-
persistence length in the perpendicular directionand the  gen bondsthat are strong enough to keep the distance be-
characteristic oscillation lengtk scale as £ ,R?)'3, which  tween the two strands constant. In R, it is argued that
is considerably smaller thasi,. The same crossover in the the relevant constraint on the system would then require that
bond-director field also persists in this limit, and, in particu-the arclength mismatch between the two strands in a bent
lar, there is a regime in which both the tangent and the bondeonfiguration should be very small. We can calculate the
director correlations are oscillatory. arclength mismatch for the bent configuration as

@
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=|r,(s)—ry(s)+ab(s)|, wherea is the separation of the spirit. One can then go further by considering the effect of
strands. We impose the constraint as a hard one, namely, viictuations on this mean field result. The power of this ap-
setAs=0 as opposed to Reff6]. Physically this means we proach is that one can easily calculate quantities that turn out
do not allow bends in the plane of the ribbon. These bend¥ be very difficult if the constraints are required to hold
are not important ird>2 because as we shall see the lowerexactly[5].

length scale will be set by the “pitch,” which will make the ~ To study the effect of fluctuations, we have performed a
in-plane fluctuations of the ribbon irreleva]. systematic I expansion(sketched in the Appendix 14].

We can argue that the simplifying assumption does no¥Ve see that no divergent behavior appears when we calcu-
change the behavior of the system. If we impose a soft confate the diagrams of the two-point correlation functions. This
straint as in Ref[6] using an energy term likek(2)f (As)?, means that the mean field behavior of these functions, at
we can see that the lenglth («/ka?)¥2 determines two dif-  least, will not change due to fluctuations, although it does not
ferent regimes; the interesting one beihg-1 (L is the  Preclude differences in higher order correlation functions.
length of the chainis Hence, our hard constraint in fact only ~ With the above discussion as justification, we apply the

restricts us to the case of interest. same approximation scheme to our problem as defined in
We implement the constrainis=0 by introducing the Sec. Il: The local constraints in E¢d) are relaxed to global
“mid-curve” r(s): ones. This can be done by adding the corresponding “mass

terms” to the Hamiltonian,

a
ry(s)=r(s)+ Eb'

Hm b adb\? b adb\® ca |
a (2 kB_T—de/—p t—zﬁ +/—p +§d—s Ve
r(s)=r(s)= 5b. P
e a db e a db
In terms of the tangent to the mid-curtze dr/ds, which we * /o " 2ds b+ /_p t+ 2 ds 'bl’ ®)

call the tangent-director field, and the bond-dirediorthe
Hamiltonian of the system can now be written as
whereb, ¢, ande are dimensionless constants. The partition

f (dt(s az(dzb(s))2 & function is then given by
H= - 3
2\ d¢?
H+Hpm

subject to the exadiocal) constraints Z[J,K]=J Dt(s)Db(s)exp — KaT

a db\? B -

t3qs) ~b L +f dS[J(S)-t(S)+K(S)~b(S)]>- (6)
4
a db
t“—LE ds -b=0. We next determine the constants self-consistently by de-

manding the constraints of E@}) to hold on average, where

For a weakly bent ribbon, the Hamiltonian in E§) can be  the thermal average is ca!culated py using the total Hamil-
conveniently thought of as having two major contributions: atonian %+ ;. Note that in choosing the above form we

bending energy+, (the first term, and a twisting energg(, ~ have Implemented the “label symmetry” of the chains,
(the second terjn namely, that there is no difference between two chains. It is

convenient to take the limit of an infinitely long chain and
perform the functional integrals in momentum space. The
Fourier transforms are defined A¢q) = fdsexp(gs)A(s).

It is well known that the statistical mechanics of semiflex-\we have
ible chains are difficult due to the constraint of inextensibil-
ity. Various approximation methods have been devised to

IIl. MEAN FIELD THEORY: FREE CHAINS

tackle the problem. A successful scheme that somehow man- ~ dq
ages to capture the crucial features of the problem is to im- Z[J,K]= J Dt(q)Db(q)exp{ Zf o
pose global(average constraints rather than locé&éxac)

ones[9-13]. This approximation is known to be good for T(q)
calculating the average end-to-end length. It can be used for X[t1(—q),b(—0q)]- M(q) )
the probability distribution of the end-to-end length only if b(q)

the persistence length is much less than the chain length so
that the chain conformation can be considered isotropic. We q JI4R-E
can get good insight into the approximation scheme by con- f J-t+K-b)|.
sidering the fact that it corresponds to a saddle-point evalu-

ation of the integrals over the Lagrange multipliers, which

are introduced to implement the constraifnt®,13. In this  The Gaussian integration can then be easily performed. It
sense, it is known to be a “mean field” approximation in yields

)
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[J.K]=exp 5 7

<[3(~q) R(—q)]-ﬁl(q»(j(q))) ®
’ CIE

where
_ 2/ 0% +4bl/ 2el/
M(a)= 2el/, / va2q*12+ba’g’l / y+call /|
€)
The averages are easily obtained frdifor example,
A ——.
i(q)-0i9 )= —=—""="—.
R 83i(a)5K(q")
The next step is to demand self-consistently that
(b(s)?)=1,
_ adb(s) 2 .
(10

a db(s)
(t(S)iEW)-b(S) =0.

The self-consistency leads to the following set of equations

for the constant$, c, ande:

1 a%c 1

—+_:_'
4\2b 4ds3 d

d
b = ,
c(bt Vo) = ——

2 /4
p

11

e=0.
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FIG. 2. The solution of the self-consistent equations for the
constantsh andc as functions ofu=a//", in d=3. The valueu,
=4.27H corresponds to the transition point.

d S
(t(s)-t(0)>=4\/%exi{—\/%/—,p , (12

whereas for the bond-director field one obtains

75 | exd—(b—bZ—c)¥(s// )]
(b(s)-b(0))= 22?0’ (b—bZ—c)1?

_exd—(b+ Vb2—c)Y4(sl1/ )]
(b+\bZ—c)12

The tangent-tangent correlatipig. (12)] is exactly what we
obtain for a single wormlike chain, and implies uniform be-
havior for all temperatures. Equatidb3), on the other hand,
indicates a change of behaviorl#t=c for the bond-director
correlation. The correlation is overdamped f>c (high
temperatures while it is underdampedoscillatory for b?

<c (low temperatures The interesting poinb?>=c happens

for u.=16/(1+2)*?d=4.27H, which leads to the value
for T, quoted abovésee Fig. 2 We also find a divergence

in the specific heaC, = ¢°F/dT? whereF=—kgTInZ at

T . It should be noted that it is not a thermodynamic phase
transition in the sense of long-range ordering and broken

] . (13

The above equations, which are nonlinear and difficult tosymmetry. It is a crossover that appears due to competing

solve exactly, determine the behaviortoéindc as a function
of u=a//,. We have solved them numerically =3 and
the solutions are given in Fig. 2. One can solve EdL)

analytically in two limiting cases. Fou<1l we find b

=d?/32 andc=(d/\2)*u~83 whereas foru>1 we find
b=d?/8 andc=4/u*. In Fig. 2, the behavior ob andc is

plotted as a function afi. Note thatu is proportional tol and
can be viewed as a measure of temperature.

effects, and the transition is from a state with some short-
range order to a state with a different short-range order.
Similar phenomena have been observed in Ising-like spin
systems with competing interactiofis5] and the crossover
(transition point corresponds to a type of “Lifshitz point”
for a one-dimensiondllD) system.
It is interesting to study the bond-director correlation in

the limiting caseb?<c, which corresponds to relatively low

We can then calculate the correlation functions. For theemperatures. Using the asymptotic forms oand c, one

tangent-tangent correlation one obtains

obtains
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1/3 B(1 B@)
b(s)-b(0))=+y2exp — S
(b()-b(0))=2 r{ 4/pa2> ® T(1,2,3)
13
d T B(2) B(2)
Xsin | ——]| s+ (14) B(1) =3
/pa 4
" TG>T 13 oo
for very low temperatures. From the above expressions for ——
the correlation functions, one can read off the persistence Y
lengths /1p~/", and /gp~(/,a?)*3 and the pitchH Like Twists
N(/paZ) 1/3_
From the tangent-tangent correlation function, we can cal-
culate the end-to-end distance. It yields B -
s(s ® T(1,2,3)
<[r(S)—|r<0)]2>=JO jodsldsz<t(sl)-t(52)>
B(2) B(2)
= d_/p S— ﬁ(l_ef\““%g/p)
4b J2b ' B(1) \1"(3)

G o

which is similar to wormlike chains. It interpolates between Unlike Twists

the I/|m|t|ng behaviors of ranzdom Walk[?~(d/p/4b)s] -fo.r FIG. 3. Coarse-grained model—like and unlike twists meeting.
,S>/P gnd rods[~(d/4\/%)s ], for S<;/P_' quever’ Itis The bond vectoB is rotating about the tangent vector in the same
interesting to note that there is a shrinking in the length Ofdirection for like twists and the opposite direction for unlike twists.
the rod by a factor of ¢/4y2b)*2, which varies smoothly
from 1 ata</, to 142 ata>/,. This implies that a
polymer made up of two inextensible strands is alway
“slightly extensible” at any finite temperature, due to the
presence of twist fluctuations. This is exactly the twist-
stretch coupling studied by various authors using homog-
enous elastic rod model$8]. Note that in our model this
coupling is aresult as opposed to the elastic rod models in
which it must be added by hand. A microscopic model pro-
posed by O’Herret al.[16], which describes DNA as a stack

of plates, also predicts a twist-stretch coupling. If we choose/ </, in the coarse-graining process, we

. A simple scaling argum_ent can ac_count K)fp. and /B'.’ can safely assume that the ribbon is rodlikes freeze out
in the low temperature regime. Consider applying a uniform

bend of radius of curvature to a section of ribbon of length the bending mod-e)sand th?t it has Oply,tW'St fluctuations,
\ without twisting it. The corresponding bending energy W& may then writeb(s) =e,cosé(s) +e; siné(s) where the
(calculated usingHy,) is given by E,~kgT/,/N. We can  (fixed) unit vectorse (i=1,2) span the plane perpendicular
then estimate/rp by finding the lengthn for which the to the rod. Rewriting Eq(3) in terms of 6(s) and imple-
bending energyE, becomes comparable {gT. Similarly, =~ menting the constraints, we obtain

applying a uniform twist per length72/A to a section of the

from the product of the tangent directors of the neighboring
Slaquettes:

/ SN
BHp==— 2 TiTia. (16)

In a spin analogy, this corresponds to a classical Heisenberg
ferromagnet in 1D, and has no competition .

ribbon of length\ without bending will cost a twist energy / a2 a?|926)?|90/?
Et=kBT/pa2/)\3 (calculated usingH;). The wavelength\ BH= Z j ds( |526]2+ | 96]*+ e

at which the twist energy; becomes comparable T a’|ds0| 17)
gives/gp.

subject to the constraint6(s)| <2/a. Note that the lowest
order contribution to the twist potential starts from a quartic
term.

The nature of competition in our double-stranded polymer \we can now expand the nonlinear term in the above
system can be understood using a plaquette model. We c@familtonian and perform the coarse graining, in the frame-
coarse-grain the ribbon to a length scat€) where we can  work of a perturbation theory, by integrating out the modes
consider it to be made up of plaquettes which are joined Upetween 1/ and 14 in the momentum shell. We can then
to form a ribbon(see Fig. 3 We can then define effective determine the form of the coarse-grained Hamiltonian and
coarse-grained bon®; and tangentT; director fields for calculate the renormalized coupling constants. We keep only
each plaquette. terms up to secondGaussiah order, which is a good ap-

The energy expression corresponding to bends comgsroximation for/’<(/pa2)1’3, and obtain

IV. PLAQUETTE MODEL AND COMPETITION
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i - 4 i - 2 ” 3 2 ] 4 Active Y.

i-3 -1 i+l i+3

FIG. 4. The schematic of the double-strand model used in the
simulation.

BHF—JlEi Bi-éHl—JZZ Bi-B., (19

where

2 //paZ

/pa / i ~ i i
Ji=Co+Cy ;3 and J,=—c, T FIG. 5. Typical conformations from MD/MC simulations of a

ribbon made up of two chains of 400 monomers abdve, ki,

=1.

wherec; (i=0,...,2) areconstants of order unity. In con-

trast to the bending energy, the effective twist energy is fruswhere

trated due to the opposite signskfandJ, [15]. In the spin

analogy, this would correspond to a model with next nearest oSO, = (i o—r)-(ri—ri_,).

neighbor competing interactions similar to the so-called axial

next nearest neighbor InteraCtI()ﬁNNNl) mOdel, Wh|Ch de' We have a bending Constaim oniy for the Springs joining
velops oscillations for certain values of the ratid,/J; (of  peads on the same chain and a stretching congtafior
order 3 [15]. This corresponds tg'~(/,a®)""%, and we can  every spring. We also have a short-range repulsion between
thus account for the pitchi~ (/' ;a?)*~. nearest neighbor beads. The MD simulation is performed by

The competition is present_only at nonzero temperaturesptegrating a Langevin equation for every bead,
and is merely due to topological constraints of the ribbon.

Another, more physical way of understanding this competi- q2

. L . . . . . I dri

tion is to consider the interaction between two neighboring m— +—=-V, U+f,, (20)
twisted regions. It is easy to see that twists of opposite sign dt? dt '

meeting at an edge tend to unwirdnnihilate each other
[17], while twists of the same sign are trapped when theywheref; is a random number chosen from a range setT by
meet; they do not annihilate each other and addsee Fig. representing the heat bath. The simulations were performed
3). atkgT=1. We are in the dissipative regime so we can ignore
the inertial term. The friction term is set 10=0.7 and the
V. SIMULATION noise is chosen so as to satisfy the fluctuation dissipation
theorem. The equilibrium bond length was set/tg=1.6.
An intriguing feature of the behavior of this model is that, The simulations were done with,=1000.
although the ground stat@ ¢ 0) configuration of the system  we performed in general £antegration time steps fol-
is a flat ribbon, and supports no twists, upon raising théowed by 1¢ attempted pivot moves. A pivot move is an
temperature, a twisted structure with short-rangist order  attempt to rotate a portion of the chain by a small random
develops. We have confirmed this by performing extensiveangle around a randomly chosen bead. The MC part is done
molecular dynamic$MD)/Monte Carlo(MC) simulations of  with the usual Metropolis algorithm accepting pivot moves
double-stranded semiflexible polymers. A bead-spring modeith a probability expAU/kgT). This mixed MD/MC pro-
with bending and stretching energies was used. We comcedure was repeated JLimes until the configurations were
bined a velocity Verlet MD algorithm coupled to a heat bathequilibrated. Equilibration was checked by starting from
with an off-lattice pivot MC algorithm. The MD was useful crumpled chains and fully extended chains and verifying that
for equilibrating the shorter length scales and MC for thethe same values for radius of gyration and correlation func-
long length scales. tions were obtained. We simulated double-stranded ribbon
We used a triangular lattice to discretize the ribtﬁeﬂe chains of 2400 monomers. The simulations were per-

Fig. 4. The position of theth bead isr; and we assume all formed on a Cray T3D with 128 processors allowing us to
the beads have mass. The two chains making up the simulate 128 chains in para”eL

double strands join the odd{Y,3,5...,799) and even  Typical equilibrated polymer configurations, shown here
({2,4.6 ...,80Q) beads together. The potential energy isin Figs. 5-7, suggest that at low temperatures the polymer
given by can be viewed as a collection of long, twistetiraighy rods

that are connected by short, highly curved sections of chain
U[{ri}] _ _ which we call “kinks,” as opposed to a smooth wormlike
e 21 kol (riv1— )" =75+ kd(riv2=r)*=7%]l  conformation. This structure melts at higher temperatures.
We plot the({b(s)-b(0)) correlation function from the
—k, cosé;, (19 simulation in Fig. 8. FoiT>T, we obtain simple exponen-

N-2
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Active

<b(s).b(0)>

0.00

0 100

FIG. 8. The(b(s)-b(0)) correlation function measured in the
simulations for temperaturels,=1, 5, and 50 corresponding to
b?>c, b?~c, andb?<c. The averages were done oved(’ sta-
tistically independent samples. The error bars are the size of the
symbols.

mated persistence lengths ard ;=2.99+0.01,25.0
+0.005,179.:0.001, respectively.
FIG. 6. Typical conformations from MD/MC simulations of a
ribbon made up of two chains of 400 monomers near, k,=10.
VI. KINK-ROD STRUCTURE

tial decay but folT<T, we see an oscillation in the corre- e show typical equilibrated conformations above, near,
lation function in agreement with E413). and belowT,, in Figs. 5-7. The snapshots of the polymer
~We plot the(t(s)-t(0)) correlation function from the onfigurations suggest that at low temperatures the polymer
simulation in F.|g. 9. Wg see the signature e.xponen'ual d_ecagan be viewed as a collection of hafstraight twisted rods
of the correlation function of wormlike chains from which 5t are connected by some kinks. This picture can be ac-
we can estimate the effective persistence length. The estiy nted for using a simple argument. We can model our
system of two semiflexible polymers subject to the constraint
of constant separation as a semiflexible ribbon, i.e., a semi-

— k=l
k,=10
— k=50

L H0)>

<t(s)

04— —

FIG. 9. The(t(s)-t(0)) correlation function measured in the
simulations for temperaturds,=1, 10, and 50 corresponding to

FIG. 7. Typical conformations from MD/MC simulations of a b?>c, b?~c, andb?<c. The averages were done overd0* sta-
ribbon made up of two chains of 400 monomers bel®w, kj, tistically independent samples. The error bars are the size of the
=100. symbols.
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flexible linear object with anisotropic rigidities whose  This analysis can be understood in the context of the

Hamiltonian reads mean field b,t) model above. By observing that at low tem-
peratures’gp</1p, ONe can imagine that there are, roughly

" _Ef dsS (ﬂ) (ﬂ) 1) speaking, rodlike(straight segments of length’tp, each

ani— 2 Sij Kilds i ds j’ supporting a number of shorter segments of lenggh that

are twisted but decorrelated with one other. One can see that
where «;; = k|bib;+ x, (8; —tit;—b;b;) determines the ri- /'gp is equal to the length scale at which the strands un-
gidity anisotropy of the ribbon, corresponding to bendingdergo conformational fluctuations of the order of their sepa-
parallel or perpendicular to the bond-director field. The rib-ration: a®=(r*=[1)da//,q*=\%/,. Hence, segments
bon structure would require> «, . [To be consistent with ~ Of length/gp are straightfor a</'). However, fluctuations
the hard constrainfsee aboveof constant separation of the Of ordera are sufficient to wash out the memory of twist.
polymers, we should take the limit of infinite.] The par- The anticorrelation in fact comes from the frustration, as

tition function of a semiflexible ribbon in the;—c limit explained above.

2

can be written as As the temperature is raised, the number of twisted rods
2
Zip= lim f Dt(s)Db(s)exp{ - mj dS( d_s) mechanism changes, and the bond correlations are cut off by
+H’[t,b]} picture have also been observed in the simulation.
=J Dt(s)Dh(s) s d_s'b exp — o7 [19]. Actin is a charged polymer, and the mutual electrostatic
B

in each segmeri=/"1p// gp decreases very quickly, until it
K| dt saturates to unity al =T, . For higher temperatures the
= the tangent fluctuations. Hence, the short-range twist order
Kl — dt does not survive anymore. All the main features of the above
I— K.
+ KT J'dS(d—Sb
B A kink-rod structure similar to the one discussed here has
K J ( dt) 2 indeed been observed in experiments done on actin filaments
ds| —
ds repulsion of its different segments plays a major role in its
structural stiffness. It is well known, however, that the intro-
+H'[t,b]

: (22 duction of multivalentcounterions(ions of opposite charge
that are necessary to neutralize the solyticen reduce the

in which H'[t,b] controls the dynamics df, and the func- electrostatic repulsion, and even lead to attraction between

tional s function enforces the constraint like charged polymers, or different like charged segments of
a same polymer20]. In a recent experiment, Tareg al.[19]
dt(s) used fluorescence microscopy techniques to image-
F-b(s)ZO (23)  densed(or collapsed actin bundles that are formed due to

the presence of multivalent counterions. Snapshots of the
bundles, showing their typical conformations, are shown in
Fig. 10. A remarkable feature in the observation was the
presence of sharp corners, which connect relatively straight
segments of the actin bundles, as can be seen in Fig. 10.
Tang et al. [19] observed that this feature is present only
H(s)n(s)-b(s)=0. (24)  when the bundle is made up of two or more filaments of
actin, and is absent when there is only a single filament in the

This constraint requires that at each point eithifs)=0,  condensate. .
which corresponds to a straigitbdlike) segment that can be  Itis plausible to assume that the observed kink-rod struc-
twisted, orn(s)-b(s)=0, which corresponds to a curved ture can be accounted for by similar arguments to the one
(kinklike) region where the the bond director is locked into déveloped above. The only difference is the fact that the
the perpendicular direction to the curve normal, i.e., theSiructure in the experimental case is a ring, as opposed to a
binormal chain with free ends. However, we do not expect this con-
We expect thécore length of the kink regions to be very Straint to affect the argument, because the inherent competi-
short at low temperatures, as observed in Fig. 7. We note th&#0n between twist and bend degrees of freedom is local. Of
the conformational entropy of the chain is due to the degreegourse, more experimental efforts are needed to rule out
of freedom in the kink regions, whereas the twist entropyOther p055|_ble scenarios for the formation qf the kinks, such
comes from the degrees of freedom in the rod segments. TS defects in the packing of more than one filament, sequence
average separation between neighboring kinks is of the ordéfisorder, or metastable effects due to the dynamics of the
of the persistence length. The ribbon thus tends to keep thgollapse.
rod segments as long as possible to maximally explore the
twist degrees of freedom, while it can recover the same con-
formational entropy as a wormlike chain from pivotal moves
in the kink regions. This explains the kink-rod structure at In this section, we study the effect of confinement on
low temperaturesg</p). As the temperature increases, thedouble-stranded semiflexible polymers. We confine the
kinks get closer to each other, until at some temperature the@ouble-stranded polymer in@, -dimensional subspace to a
average separation becomes comparable to their gige ( box of sizeR, while leaving it free in the remaining =d
~a), and the kink-rod pattern disappears. —d, dimensions.

to hold exactly at every point of the ribbon. Recalling that
dt/ds=H(s)n from the Frenet-Seret equatioft8], where
H(s) is the curvature at each point ands the unit normal
vector to the curve, we can write the constraint as

VII. MEAN FIELD THEORY: CONFINED CHAINS
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Structural Variants of F-actin Bundles

FIG. 10. Snapshots of condensed actin rings due to the presence
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TABLE 1. The limiting behavior of the confined polymer:
Asymptotic behavior of the solutions of E(6).

b c g
2\ 43 2\ 413
m R, a_, & (4% (d_ié
7o 7o 32 V2 a? 4\2 R?
2 d /2 4/3 2 4
@ Rop 2 & (22 L
7z ‘o 32 V2 a? a2 R?
2\ 413
@ R, 2., @+d? e /3 (d_/_)
o o 2  (d+d)?a’ |42R
R g2 4/ a2 /4
(4) —>1 i> - P ML 7p
Tt s & a2 RS
e=0. (26)

Although the above nonlinear set of equations is very diffi-
cult to solve, we can get the behavior of the solutions by
looking at the asymptotics in the limiting cases, as summa-
rized in Table I. The full solutions are in fact smooth inter-
polations between the asymptotics. We solved the equations
numerically for the experimentally relevant case=1 and
d=3.

Having determined the constants self-consistently, we can
calculate the correlation functions. For the tangent-tangent
correlation in the parallel direction one obtains

of multivalent counterions, from the experiment by Tatgl.[19].
The kink-rod structure is manifest, in bundles with two or more
filaments[19].

(tj(s)-t)(0))=

d p(_ i)
4@ex @/p , (27)

In terms of the tangent to the mid-curte dr/ds and the ~ Whereas for the perpendicular direction one obtains
bond directob, the total Hamiltonian of the system can now

be written as d, 2 1/2
t,(s)-t,(0))= ——| (b+ Vb"—
Hconf_ 7'H"Hm g f 2
T~ ket 3] O @9 xend - (b4 {9
p
whereg is a dimensionless constant in additiorbiac, ande —(b— ~/b?—g)1’2

defined in Sec. Ill. The constants will be determined self-
consistently by demanding that the relevant constraints hold
on average: inextensibility of the individual strands, constant
separation between the chains, the bond director being nor-
mal to the strands, and confinement of the polymer to a bogimilarly, for the bond-director field it yields

of sizeRin d, dimensiong(r?(s))=R?]. This final con-

straint is valid as long as the chain length is much larger thal ex] —(b—b?—c)"As//)]
R. We obtain the following set of equations forc, €, andg: (b— JbZ—c)12

X exp( —(b—+b?- g)m;) } (28)
p

2

Nb(s)-b(0)) = —?
< (S) ( )>_2a2\/m

\/Ea_2+ gR_2+ L, exd - (b+ \/b?—c)l’z(s//p)])’ 29
42" 2 4 (b+\b?—c)¥?
2 4 while the rest of the two-point functior{the cross termsare
c(b+ )= 3 zero. The parallel component of the tangent-director correla-
2a%’ tion function decays purely exponentially. However, the cor-
relation function of the perpendicular component of the
2 4 tangent-director field, as well as that of the bond-director
g(b+ \/5)2 L P field, develop a crossover from purely exponential decay for
32R* b?>g andb?>c, to oscillatory decay fob?<g andb?<c,
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sinusoidal packing of the polymer in the confining cavity,
where again the size of the oriented segméifits period of
the oscillationgis set by the walls cutting off the roughness
of the polymer. As seen in Sec. VI, a semiflexible ribbon
develops a kink-rod structure at finite temperatuf@ise to
the strong anisotropy in rigidijy in which rodlike segments
(about a persistence length Igngre connected by rather
sharp kinks with a core size of the order of the diameter of
the ribbon. If such a structure is restricted to a size less than
the bare persistence length, new kinks have to be created at
the confining walls to squeeze the ribbon into the available
space. This therefore leads to the compact zigzag conforma-
tion of kinks and rods and the subsequent oscillatory tangent
correlations.

It is straightforward to calculate the free energy of the
system. We find

—=—= limwv>>1

lim u>>1
A

=R/l

F _Fo®

— L ((b+ \/_2_)1/2+(b \/—2_)1/2

kT kBT
+<b+¢ﬂ>”+(b—¢b —9"). (3D

It is interesting to examine the limiting behavior of the free
energy as a function dk. We obtain

b c;g<e

F(R) L (d, 12"/, IR)#® for RI/,<1

KaT 27, | (ad, 1d3)(/,IR)? for RI/p>1,
(32)

wherea is a smoothly varying numerical coefficient ranging
FIG. 11. The phase diagram as a functionvef R//, and u from a=4 fora// ;<1 to a=1 for a//y>1. The free en-
=al/, calculated numerically using E¢26). We work in three  ergy, interestingly, interpolates between the steric repulsion
dimensionsd=3 and with confinement in one directiah = 1. of non-self-avoiding flexible polymers confined B [21],
which has 1R? behavior, and the Helfrich undulation free
respectively. The phase diagram of the system in the space efhergy of stiff polymers confined t& [5,22], which has
dimensionless parameteRé/, anda//,, is shown in Fig.  1/R?* behavior[23].
11. The boundaries between different regions are obtained Using the above results, we now analyze some recent ex-
from solutions of Eq(26). periments by Ottet al. [24] who measure the persistence
It is instructive to examine the perpendicular componeniength of actin filaments confined between microscope
of the tangent-director correlation function in the limiting slides. The separation of the slides was of the ordeR of

caseb?<g, which corresponds t&R// ;<1 (see Table )l =1 um and they found a persistence leng#ssuming a
Using the asymptotic forms fds andg, one obtains two-dimensional wormlike chajnof Lg=16.7 pum. These
results are in the regime addressed by our model. For very

From the analog of Eq(30) calculated for single-stranded
semiflexible polymers, we findt?)=(R/L{>)#%2. There-
fore one must include the fluctuations perpendicular to the
(30) confining plates in the calculation of the true persistence
length. This implies that on average the polymer makes an
angle 6 given by sing=/(t?) with the plates where<1.
The effects of confinement are best seen in this limiting exOne therefore has a corrected persistence Iedgﬁhe
pression. The persistence length of the polymer in the C°”~L(°)/cos¢9 L(O)/\/l——<t§- We therefore estimate for those

fined directions is reduced t6, ~(/,R?)*3. This “deflec- experlments a correction of approximately 4%, "
tion length” [5] is in fact the length at which roughening of _ 17.4 um P

a semiflexible chain of bare persistence lengthbecomes

comparable to the confinement size separation of the con-
fining walls R: R2=(rf>=f1,/idq//pq4. In other words,

the presence of the boundaries provides another competing In conclusion, we have calculated the properties of a well-
mechanism to cut off tangent correlations in the directions oflefined model of a double-stranded semiflexible polymer and
confinement. Moreover, the oscillatory form of the correla-shown nontrivial differences between the high, low, and zero
tion function with a period\=/", ~(/,R%)™ implies a  temperature behavior. At high we find normal wormlike

df R2 3 ( d, 3 small but finiteR the chain fluctuates between the two plates.
t(s):t,.(0)=| —F—=-—3| Xexpg-—
(st 0)=| 572 o 7

1/3

X sin + —.
4

L
16/ ,R?

VIIl. CONCLUSION
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2

chain behavior and at low we observe a kink-rod structure Heibbon A dt\2 C db db
vy|th short-range twist order while a&=0 we have a flat keT EJ S(d_s) + Ef %E—t(t' d_s)
ribbon.

In the analytical approach, the only approximation we
have made is the relaxing of local constraints to global onesn which the tangent and the bond-director fields are subject
Using a systematicl/d expansion(see the Appendixwe to the following constraintsit?=1, b*=1, t-b=0, and
have shown that to calculate the two-point correlation funcb- (dt/ds)=0 [Eq.(23)]. A similar calculation with the more
tions this is a valid approximation, as higher order correcrealistic(and more complicatgdHamiltonian of Eq.(3) will
tions only change the values of parameters but do not chand@ad to essentially the same conclusions. The partition func-
the analytic form of the functions. Extensive MD/MC simu- tion of the ribbon can be calculated as
lations confirm the analytical results.

We_have also e_xanjlned the effect of confinement on the sz DtDbDA DA, DA ;DA go~ SPAL A2 A3 M),
behavior of semiflexible double-stranded polymers, and
found four interesting regimes of the conformation and inter-
nal twist structure of these polymers, as summarized in Figy;itn
11: (A) Weak confinement and relatively short bonds lead to
free wormlike chain conformations with short-ranged twist A dt\2 C d
anticorrelations(B) weak confinement and relatively long S= EJ ds(d_s) f d (
bonds give rise to free wormlike chain conformations and
twist disorder,(C) strong confinement and relatively short
bonds yield sinusoidal packing of the chains and short-
ranged twist anticorrelations, and finall) strong confine-
ment and relatively long bonds lead to sinusoidal packing ofn which {\ (s)} are the “stress” (Lagrange multiplier
the chains and twist disorder. fields enforcing the constraints. The integrations avemdb

There are a number of advantages evident in our apare now Gaussian and can be performed to yield
proach. First, we introduce a microscopic model that remains

true to the chemical structure of many biomolecules. Second, d

our approximatemethod of solving this model also lends Ser Ai]=7Inde
itself to the analysis of the fluctuations in the system and to

studying intermediate-scale behavior as well as the ground

state (long-length-scale properties. Finally, this method —idf ds(Ay+Ny). (A4)
could be easily extended to describe multistranded objects.

We expect that the effect of an intrinsic twist will change theNote that we have rescal@dC, and{\ ,(s)} by d. Extrem-

ground state but will not change any of the conclusions ofzjng the effective action corresponds to the saddle-point or
our description, although we expect it to make the effectiveyean field solutiond= ). The saddle-point equations yield
persistence length much higher. We hope to address sucl:l;r N

questions in a subsequent publication. 1= 1/(8A),iA,=/(8C), andA3=\,=0.
To proceed to the higher orders indlive need to calcu-

late the\ propagators defined as

(A2)

b 2
5 +if ds[)\l(s)(tz—l)

% ds

+A,(8) (02— 1)+ Ng(s)(t- b)+)\4(s)(t~ 3—2”, (A3)

—A2+2iN;  iNgFiNads
iNg—idhg —Ca2+2iN,
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saddle point

dA\ straightforward calculation then leads to

07194 and DMR-98-05833. Ko @DR o= )= %qz Lo, (A7)
APPENDIX: 1/d EXPANSION <X3(q)~x3(_q)>: %qZJrO(l), (A8)
To justify the mean field approximations used in Secs.
and VII abov_e, we perform a syster_natic_dléxpansion that ~ B A+C
allows us to implement the constraints in a controlled way. (Na(QNa(—Q))= ——%2+0(1/9?), (A9)
Our approach is similar to the one successfully used by 2d

David and Guitter to study the crumpling transition of crys-
talline membrane§l4]. For simplicity, we consider a more

-~ o~ A
primitive model of an elastic ribbon with the Hamiltonian Aa(@ha(—@)= ﬁ(_quo(l/q)' (A10)
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while all the others are zero. Note that we have kept only the T F (A A\ — D S
large momentum limit, since we are interested in the local (bi(@)bj(aIN(~a=a")=214;, (A14)
(short-distancebehavior of the Lagrange multiplief&4]. L _
The above\ propagators, the correlators for the tangent (ti(@)b;(a")As(—q—q'))=id, (A15)
and bond fields
S (ti(abj(@")Na(-g—0a"))=—0'd;, (A16)
——, (A11)
AQ +1/(4A) as read from Eq(A3), could now be used to construct dia-
grammatic expansions. Examining the two-point correlation
~ ij functions fort andb, we then find that the perturbative ex-
(bi(a)b;(—q))= Cq?+1/(4C) (A12) pansions are well behavedot singulay, and only correct
the numerical values of the coupling constants by finite
and the three-point vertices amounts at each order. We thus conclude that the mean field
o 5 behavior corresponding to the saddle-point approximation is
(ti(@)tj(a)N(—g—q'))=2i5;, (A13)  qualitatively valid.
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